首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41501篇
  免费   5338篇
  国内免费   2241篇
电工技术   1404篇
技术理论   6篇
综合类   3449篇
化学工业   7016篇
金属工艺   4754篇
机械仪表   2021篇
建筑科学   2503篇
矿业工程   4395篇
能源动力   1617篇
轻工业   2013篇
水利工程   4290篇
石油天然气   1532篇
武器工业   212篇
无线电   2566篇
一般工业技术   5220篇
冶金工业   4022篇
原子能技术   362篇
自动化技术   1698篇
  2024年   76篇
  2023年   991篇
  2022年   1078篇
  2021年   1542篇
  2020年   1672篇
  2019年   1480篇
  2018年   1286篇
  2017年   1509篇
  2016年   1509篇
  2015年   1633篇
  2014年   2379篇
  2013年   2470篇
  2012年   2740篇
  2011年   2888篇
  2010年   2212篇
  2009年   2215篇
  2008年   2027篇
  2007年   2779篇
  2006年   2703篇
  2005年   2383篇
  2004年   1869篇
  2003年   1891篇
  2002年   1445篇
  2001年   1199篇
  2000年   1075篇
  1999年   787篇
  1998年   656篇
  1997年   452篇
  1996年   428篇
  1995年   344篇
  1994年   305篇
  1993年   211篇
  1992年   186篇
  1991年   148篇
  1990年   119篇
  1989年   98篇
  1988年   59篇
  1987年   36篇
  1986年   28篇
  1985年   35篇
  1984年   33篇
  1983年   27篇
  1982年   22篇
  1981年   10篇
  1980年   11篇
  1979年   5篇
  1978年   3篇
  1977年   11篇
  1975年   5篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Transition metal phosphides (TMPs) have been considered as cheap alternatives of precious metal platinum for electrochemical hydrogen evolution reaction (HER). In the past decades, many reports have indicated that the engineering of heterointerfaces between different components could efficiently enhance the activity of HER catalysts. Here, we report a facile method to construct Ni12P5–Ni2P heterostructure by using a low temperature phosphorization strategy. The obtained Ni12P5–Ni2P heterostructure shows high activity toward HER with an overpotential value of 166 mV at 10 mA cm?2 and a Tafel slope of 60 mV dec?1 in 0.5 M H2SO4. Compared with pure Ni2P and Ni12P5, the Ni12P5–Ni2P heterostructure has more active sites and faster HER kinetics due to the presence of the interfaces between Ni12P5 and Ni2P. Furthermore, we used the obtained Ni12P5–Ni2P as cathodic catalyst and IrO2/Ti as anodic material to set up a proton exchange membrane (PEM) electrolyzer which shows good stability after 120 h continuous constant current electrolysis at 200 mA cm?2. This work demonstrates the positive effect of heterostructure for HER catalysts and provides a feasible strategy for constructing earth-abundant electrocatalysts.  相似文献   
102.
Electrocatalytic water splitting for hydrogen production plays a vital role in the development of new energy field, but there is still a lack of low-content precious metal or cost-effective non-noble metal catalysts for the hydrogen evolution reaction (HER). Therefore, how to develop the catalysts with a smaller amount of precious metal to achieve higher performance is still a major challenge. Herein, we have fabricated Ru–Ni2P@Ni(OH)2/NF-2 heterostructure by phosphating Ni(OH)2/NF and then anchoring Ru on the surface through wet chemical strategy. Benefiting from its optimal ΔGH1 and synergistic effect, this Ru–Ni2P@Ni(OH)2/NF-2 catalyst shows superior electrocatalytic HER kinetics in alkaline electrolyte. A small overpotential of 31 mV is needed for this electrocatalyst to obtain the current densities of 10 mA cm?2 with remarkable durability over 24 h. This work provides a new strategy for the preparation of effective HER electrocatalyst with a low precious metal content.  相似文献   
103.
Pd catalysts supported on activated carbon (Pd/C–NH3) toward HCOOH dehydrogenation were prepared by a simple adsorption method using ammonia (NH3) and Ar as the working gas. The results show that the TOFinitial of Pd/C–NH3 was 459.8 h−1 at 50 °C. When the reaction was carried out for 4 h, the HCOOH dehydrogenation ratio over Pd/C–NH3 was about 81.2%, which was 1.15 and 1.13 times, respectively, as that of the as-prepared Pd/C catalyst without any treatment (Pd/C–As) and the Pd/C catalyst purchased from Sigma-Aldrich (Pd/C-CM). The total amount of H2 and CO2 produced by using Pd/C–NH3 to decompose HCOOH in the third cycle was 99.4% of the gas produced by the first reaction cycle, and 1.80 and 12.60 times, respectively, as that of Pd/C–As and Pd/C-CM. The characterization results indicated that the Pd active species in Pd/C–NH3 migrated to the outer surface of the carbon support during the reaction, and the pore volume of the carbon support became larger, which were beneficial to the reaction. These factors made Pd/C–NH3 exhibit excellent HCOOH dehydrogenation activity and stability. NH3 adsorption is a simple and effective method for preparing high-performance Pd/C HCOOH dehydrogenation catalysts, and has important guiding significance for the preparation of other carbon supported noble metal catalysts.  相似文献   
104.
Developing lower-cost and higher-efficient photocatalysts is still a major challenge for the solar to hydrogen energy conversion by photocatalytic water splitting. Herein, P-doped Co9S8 (P–Co9S8) was synthesized by a hydrothermal process using low-cost RP as raw material, and then P–Co9S8 was employed to construct heterojunction with g-C3N4 via a mechanical-mixing method. Investigation shows that P–Co9S8 can not only improve the electrical conductivity and surface area of the composite, but also can lower the over-potential of H2 evolution, leading to an enhanced H2 evolution kinetics. The H2 evolution rate of resultant 25% P–Co9S8/g-C3N4 reached 4362 μmol g−1 h−1 under UV and visible light, being nearly 121.2 times higher than that of g-C3N4. The charge transfer between P–Co9S8 and g-C3N4 follows the Type-I route based on the photoelectrochemical analysis, leading to more electrons on the conduction band of P–Co9S8 to participate the H2 evolution processes. This work provides a new way for preparation of P-doped sulfides with potential applications in the field of photocatalysis.  相似文献   
105.
The electrolytic production of hydrogen (POH) from alkaline water electrolysis is at the forefront of technology for alternative energy sources of the future. The present work evaluates the improvement of electro-catalytic activity (ECA) on Ni electrodes for the POH by electrodeposition of cobalt (Co). Tests were conducted in alkaline solution and the ECA of Ni and Ni–Co electrodes for the POH were compared using alternative and direct current techniques. Tafel polarization tests exemplified a significant improvement in the ECA of the bimetallic electrode (Ni–Co) compared with the Ni-electrode. Besides, the bimetallic electrode required less input overpotential energy (η) for the given POH rate under constant current density. Electrochemical impedance spectroscopy (EIS) revealed a significant increase in the number of electrochemical active sites and changed the surface morphology following the electrodeposition of Co over Ni electrodes.  相似文献   
106.
The research on electrode materials for supercapacitor application continues to evolve as the request of high‐energy storage system has increased globally due to the demand for energy consumption. Over the past decades, various types of carbon‐based materials have been employed as electrode materials for high‐performance supercapacitor application. Among them, graphene is 1 of the most widely used carbon‐based materials due to its excellent properties including high surface area and excellent conductivity. To exploit more of its interesting properties, graphene is tailored to produce graphene oxide and reduced graphene oxide to improve the dispersibility in water and easy to be incorporated with other materials to form binary composites or even ternary composites. Nowadays, ternary composites have attracted enormous interest as 2 materials (binary composites) cannot satisfy the requirement of the high‐performance supercapacitor. Thus, many approaches have been employed to fabricate ternary composites by combining 3 different types of electroactive materials for high‐performance supercapacitor application. This review focuses on the supercapacitive performance of graphene‐based ternary composites with different types of active materials, ie, conducting polymers, metal oxide, and other carbon‐based materials.  相似文献   
107.
108.
The density of a molten alloy can be calculated from the quotient of its molar mass divided by its molar volume. The molar volume of a molten alloy, however, often deviates from the average of the molar volumes of its constituents. The deviation is caused mainly by the affinity (or lack of it) between dissimilar atoms, which can be quantified by the enthalpy of mixing. Up to now, the link between the enthalpy of mixing and the volume change has been determined empirically through the regression of experimental measurements of alloy densities. In the present study, the derivative of molar volume with respect to enthalpy was deduced and the molar volumes of molten alloys were computed entirely based on the properties of pure elements and the enthalpy of mixing of the alloys. The very slight increase in the packing density due to the size difference of different atoms was also considered. The effect of cluster formation due to short range ordering was also addressed. Over six hundred data points were used in validations. Excellent agreements were achieved between the calculated values and the experimental measurements.  相似文献   
109.
We propose an in-process height measurement system for a weld bead and feedback control system for wire-feeding speed for high-quality laser deposition. Metal additive manufacturing, especially laser metal-wire deposition, is effective for complex shape fabrication and repair processing. However, we must control the gap between a weld bead and a feed wire in an optimal range for high-quality deposition. Conventionally, the Z-stage pitch for multi-layer deposition must be precisely adjusted by each deposition shape. In this paper, we design an in-process height measurement system that is integrated in a laser processing head, which measures the weld bead height by a line section method. We decreased the influence of the intense thermal radiation generated from a melt pool by inserting the band-pass filter of the line beam's wavelength in the imaging system and optimizing its line laser power. Consequently, our system can measure the weld bead height near the melt pool, which is 4 mm in front of it. Next we show that our proposed system can measure the weld bead height during wire-laser metal deposition with 50-μm accuracy by comparing its value to the true value. Finally, we achieved a cylinder shape deposition of 50-mm height, regardless of the Z-stage pitch and the cylinder diameter of the multi-layer deposition, by controlling the wire-feeding speed based on the measured weld bead height.  相似文献   
110.
对原始态、步冷态、脱脆态和脱脆步冷态2.25Cr-1Mo-0.25V钢母材及焊缝冲击试验结果进行分析,得到了母材和焊缝在不同状态下的韧脆转变温度vTr54.2和FATT以及脆化度ΔvTr54.2和ΔFATT。试验结果表明,步冷试验之后,母材发生较低程度脆化或脱脆现象,但是脆化度或脱脆度较低,表明母材具有良好的抗回火脆化性能;经脱脆试验后,母材和焊缝都发生较高程度的脱脆,表明材料的脆化主要是由于回火脆化引起的,脱脆试验使得材料的韧脆转变温度降低;脱脆步冷试验后,焊缝发生较高程度的脆化,焊缝对脱脆步冷试验的敏感性较高,脱脆步冷试验有效促进了焊缝的脆化。在相同脆化条件下,母材的脆化敏感性低于焊缝,焊缝更易发生脆化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号